BC

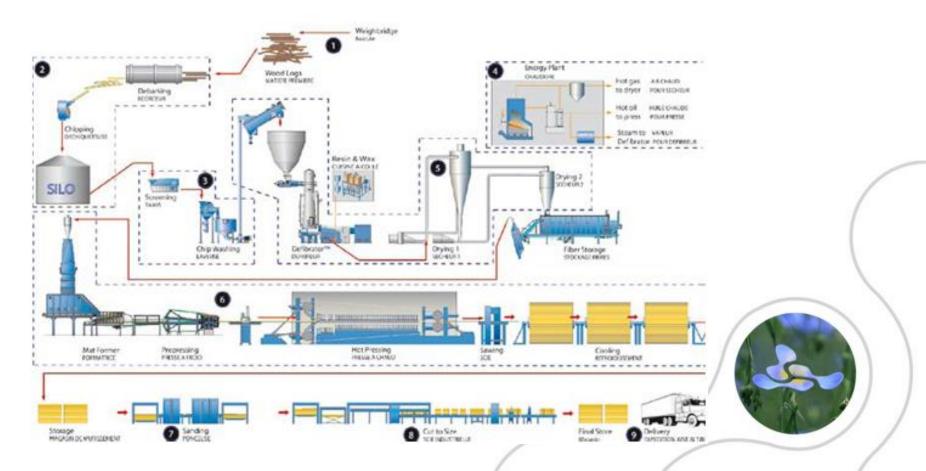
Formaldehyde and standards in board products

Dr Morwenna Spear

Contents

- VOCs in wood based panels
- Formaldehyde measurement
- What is going on in the panel?
- What can we do about it?
- What are the legislators doing about it?

VOCs in manufacture and in service


Workplace exposure limit 2 ppm time weighted average over 8 hours Short term limit 2 ppm in 10 minutes

EPA no more than 0.016 ppm in new building constructions Studies show typically 0.076 ppm in a new home, dropping to 0.045 ppm in 28 days

Production process

Individual VOC and their content at different manufacturing stages.

No.	RT (min)	MW (amu)	Compounds	Content (µg)				
				UFR	WC	WF	MDF	PFR
1	2,881	72.1	2-methylbutane	-	6.4 ± 0.5	-	-	-
2	3,227	72.1	Pentane	-	37.3 ± 4.6	26.4 ± 14.3	-	-
3	3.302	58.0	Acetone	1.8 ± 0.7	-	1.2 ± 0.1	-	-
4	3.457	68.1	2-methyl-1,3-butadiene		10.9 ± 1.3	-	-	-
5	3.680	76.1	Dimethoxymethane	51.1 ± 23.6	-	-	-	338.3 ± 156.9
6	4.052	84.0	Methylene chloride	-	11.4 ± 1.5	-	7.6 ± 2.4	-
7	4.405	86.1	2,3-dimethylbutane		8.1 ± 0.7	-	-	-
8	4.464	86.1	2-methylpentane	-	1161.1 ± 230.0	314.4 ± 203.6	-	-
9	4.787	86.1	3-methylpentane		9.8 ± 1.7	16.3 ± 7.2	-	-
10	5.108	60.0	Acetic acid	-	_	_	174.9 ± 10.9	-
11	5.153	86.1	Hexane	-	1399.8 ± 626.7	213.4 ± 134.1	46.5 ± 12.3	0.7 ± 0.1
12	5.370	72.1	2-Butanone	12.3 ± 0.2	_	_	_	_
13	5.732	88.1	Ethyl acetate	0.3 ± 0.2	101.1 ± 20.5	35.6 ± 0.1	-	-
14	5.959	84.1	Methylcyclopentane	_	5.2 ± 0.8	_	-	-
15	6.127	72.1	Tetrahydrofuran	-	_	-	95.3 ± 37.7	-
16	6,723	100.1	2-methylhexane	_	41.5 ± 10.5	11.6 ± 6.8	_	_
17	6.865	74.1	1-Butanol	_	-	_	_	88.1 ± 0.8
18	7.512	86.1	2-Pentanone	3.9 ± 0.1	-	_	_	_
19	7.736	86.1	3-Pentanone	3.3 ± 0.1	-	_	_	-
20	8.289	102.1	Butanoic acid methyl ester	1.3 ± 0.1	_	_	_	_
21	9.448	92.1	Toluene	_	21.7 ± 1.3	13.4 ± 5.5	_	_
22	10.328	128.2	2,4-dimethylheptane	_	94.0 ± 1.3	221.7 ± 69.1	_	_
23	11.552	106.1	Ethylbenzene	0.2 ± 0.1	58.0 ± 5.1	59.0 ± 16.3	_	_
24	11.704	106.1	p-xylene	_	241.2 ± 18.7	195.7 ± 58.1	21.9 ± 1.3	-
25	12.219	104.1	Styrene	_	75.1 ± 36.6	_	69.9 ± 18.2	_
26	12.992	136.1	a-pinene	_	187.0 ± 133.7	110.7 ± 43.9	75.9 ± 24.9	-
27	13.374	136.1	Camphene	_	39.0 ± 4.1	35.2 ± 4.9	27.4 ± 0.9	-
28	13.989	118.1	a-methylstyrene	_	-	_	_	0.7 ± 0.2
29	14,950	170.2	Dodecane	_	138.9 ± 9.1	87.7 ± 32.7	_	_
30	16.057	142.1	Nonanal	2.4 ± 0.8	_	_	_	-
31	16.973	162.1	1,3-dimethylbutylbenzene	_	_	-	-	3.3 ± 0.9
32	17.772	156.2	Decanal	5.4 ± 2.9	_	-	-	_
33	18.051	128.1	Naphthalene	_	13.0 ± 2.2	8.8 ± 0.6	6.2 ± 0.8	-
34	20.873	204.2	a-cubebene	_	5.9 ± 0.7	_	_	-
			Total	81.9 ± 28.9	3666.2 ± 1111.6	1351.2 ± 597.2	525.7 ± 109.4	431.1 ± 158.8

- Not detected.

VOCs in panel manufacture

• Study by He, Zhang and Wei (2012, Building and Environment 47(1):197-204)

UFR = UF resin WC = wood chip WF = resonated wood fibre MDF = MDF panel PFR = PF resin

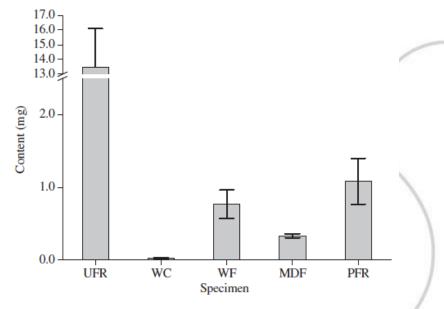


Fig. 5. Formaldehyde content at different manufacturing stages.

Analytical methods

Detection / Derivatisation / Sensors

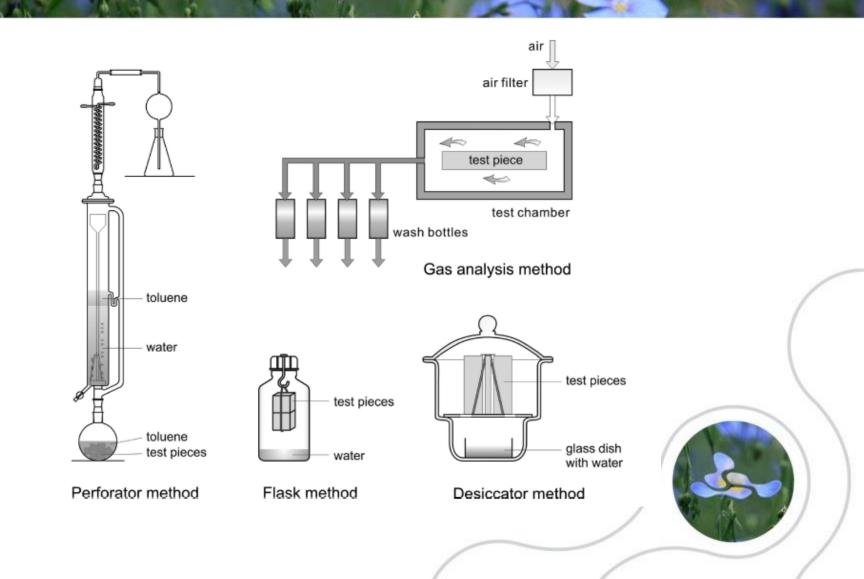
Materials testing approaches

- Perforator method
- Flask method
- Desiccator method
- Gas analysis

Climate controlled testing

Field evaluation

More info: Review by Salthammer et al. 2010, Chemical Reviews 110.2026



Perforator method

- Or TEF test (total extractable formaldehyde)
- EN 120:1992 Wood based panels. Determination of formaldehyde content. Extraction method called the perforator method.
- Now superseded by EN ISO 12460-5
- Cubes of wood in toluene are refluxed in special apparatus (perforator) to bubble the toluene through water.
- Water is analysed for formaldehyde content

BC

INNOVATION IN BIO-MATERIALS FOR INDUSTRY

Flask method

- EN 717-3:1996 Wood-based panels. Determination of formaldehyde release. Formaldehyde emission by the flask method.
- Three board pieces (20g) in a flask of 400ml volume above 50ml of water
- Water is analysed for F content

Desiccator method

- Various iterations exist from different regions (America, Australia, Japan)
- ISO 12460-4
- Similar to the flask method, but with bigger volumes

- Gas analysis method
- EN ISO 12460-3:2015 Wood-based panels.
 Determination of formaldehyde release. Gas analysis method
- Previously: EN717-2:1995 Wood-based panels.
 Determination of formaldehyde release. Formaldehyde emission by the gas analysis method.

Formaldehyde in controlled climate

Chamber method

- EN 717-1: 2004 Wood-based panels. Determination of formaldehyde release. Formaldehyde emission by the chamber method.
- Material is enclosed in a chamber of fixed volume
- Temperature, relative humidity, air exchange rate, air velocity are controlled
- Measure the formaldehyde content of the air, and the specific emission rate (SER)

Specific Emissions Rate (SER)

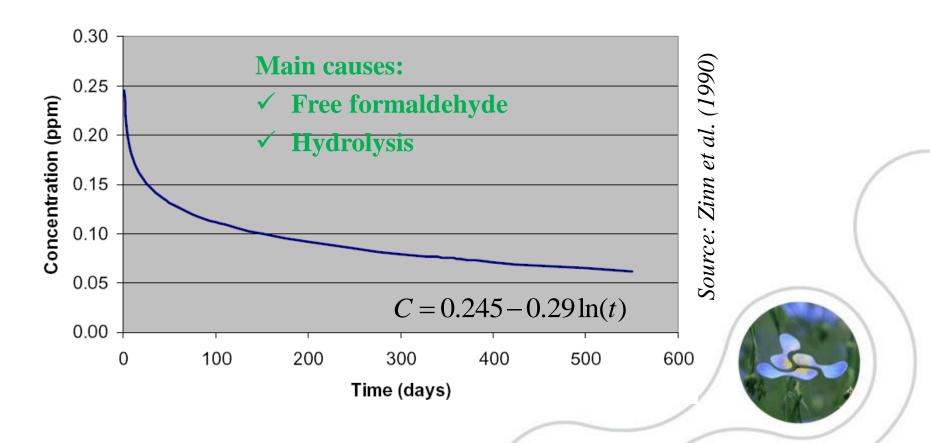
- SER = N C_s / L
- Where N = air change rate (1/hr)
- $L = loading factor (m^2/m^3)$
- $C_s = steady state concentration (mg/m³)$
- ISO 16000-10

Measurement VOCs from surfaces

- FLEC (Field Laboratory Emission Cell)
- ISO 16000-10 (emission test cell method)
- Stainless steel cell, with diameter 150mm
- Bolted to evaluation surface
- Gives surface area of 0.0177 m2 and volume of 35ml for analysis
- Controlled gas flow and analysis
- Collect a defined volume of air and analyse chemometrically

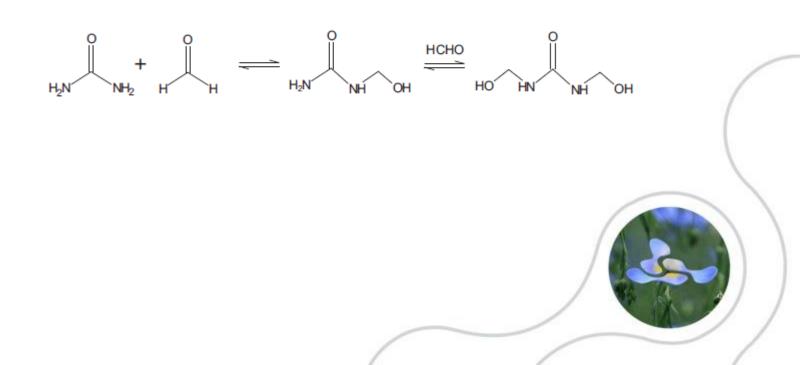
Resins

Urea formaldehyde resins

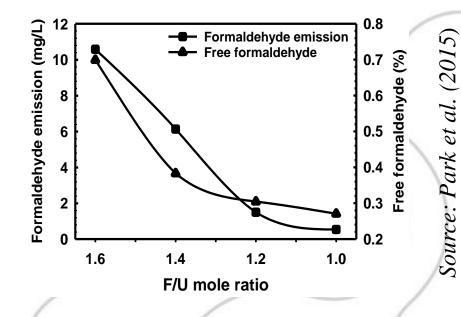

- Inexpensive
- Fast curing rate
- Good performance
- Well understood
- Resin manipulation easy
- Colourless

But:

- Formaldehyde emissions
- Lower resistance to water
- Not suitable for exterior products

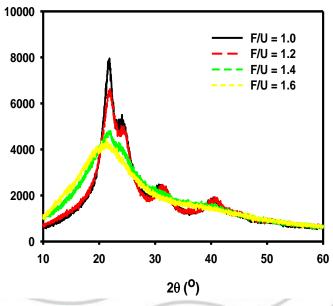


Formaldehyde emissions


UF resin manufacture

Lowering the formaldehyde - urea ratio (F/U)

- Can reduce the free-F and F-emissions
- But this increases the gel time
- Pressing becomes less economic


Lowering the formaldehyde - urea ratio (F/U)

- Also reduces UF susceptibility to hydrolysis
- But reduces the stiffness of the adhesive
- Has been related to altered number of cross links within the resin
- Can lead to lower performance boards

- Lowering the formaldehyde urea ratio (F/U)
- Resin hardness is also reduced
- This can be related to a more crystalline resin forming at low F/U ratios (Park et al. 2011) age
- Crystallinity approaches 45% at ^{⁴/₂}
 F/U ratio of 1.0

Scavengers:

- Urea and ammonium chloride
- Typically 20:1
- NH4CI acts as acid catalyst and scavenger
- Organic amines
- Formaldehyde binding paraffins

Scavengers:

- Ammonium bisulphite
- Ammonium bisulphite
- Ammonium chloride
- Pozzolan
- Charcoal

Scavengers:

- Altered UF chemistry, e.g. glyoxal
- Essentially swapping one aldehyde for another, with lower volatility
- React glyoxal with monomethylol urea
- Reasonable results in plywood tests

Alternative resins:

- Isocyanate resins platform
- pMDI
- Relatively expensive

Strategies for reducing free formaldehyde 3

Alternative resins:

- Protein based resins
- E.g. Soyad

Strategies for reducing free formaldehyde 3

Alternative resins:

Starch based resins

Standards and regulations

- Standards for:
 - Classification
 - Quality Assurance
 - Physical properties
 - Mechanical properties
 - Decay resistance
 - Chemical release (VOC / formaldehyde)
 - Testing standards
 - Product standards (e.g. toys, flooring)
 - End of life disposal

Standards – formaldehyde content

• EN120 Perforator method

	Total extractable formaldehyde mg / 100g panel
E2	< 15
E1	< 6.5
EO	< 0.8

Standards – formaldehyde emission

Desiccator method

Korea	Japan (JIS A 1460)	Formaldehyde mg / litre
E2	F*	< 5
E1	F**	< 1.5
EO	F***	< 0.5
S-E0	F****	< 0.3

2ppm

(OSHA

Formaldehyde in indoor air - guidelines

- Threshold limit values (TLV)
- Time-weighted average values (TWA) 0.75ppm
- Short term exposure limits (STEL)
- Ceiling values (C)

0.016ppm

(NIOSH

Formaldehyde in indoor air - guidelines

- Threshold limit values (TLV)
- Time-weighted average values (TWA) 0.1ppm
- Short term exposure limits (STEL)
- Ceiling values (C)

Formaldehyde in indoor air - guidelines

- Differences between workplace exposure and occupational are due to:
- Duration 8 hrs vs potential 24 hours
- Age and frailty of people present (children, the elderly)
- Prevention of acute health effects versus prevention of development of chronic illnesses
- Occupational levels also address prevention of significant sensory irritation, and potential presence of individuals who are allergic to F

country	year issued	value		comments	
Australia	1982226	0.1 ppm	$120 \ \mu g \ m^{-3}$	short-duration	
	2006227	0.08 ppm	$100 \ \mu g \ m^{-3}$		
Canada	1987220	0.1 ppm	$120 \ \mu g \ m^{-3}$	action level	
	1987	0.05 ppm	$60 \ \mu g \ m^{-3}$	target level	
	200522	0.1 ppm	$123 \ \mu g m^{-3}$	1 h	
	2005	0.04 ppm	$50 \ \mu g \ m^{-3}$	8 h	
China	2003225	0.08 ppm	$100 \ \mu g m^{-3}$	1 h average	
Denmark	1990 ²⁰⁷		0.15 mg m ⁻³	0	
Finland	2001209		$30 \ \mu g \ m^{-3}$	S1	
			$50 \ \mu g \ m^{-3}$	S2	
			$100 \mu g m^{-3}$	\$3	
France	2008213		50 $\mu g m^{-3}$	2 h (proposed)	
			$10 \ \mu g \ m^{-3}$	long-term exposure (proposed)	
Germany	1977216	0.1 ppm	10		
Singapore	1996224	0.1 ppm	$120 \ \mu g \ m^{-3}$	8 h	
Hong Kong	1999	0.025 ppm	$30 \ \mu g \ m^{-3}$	level 1 (8 h)	
		0.081 ppm	$100 \ \mu g \ m^{-3}$	level 2 (8 h)	
		0.3 ppm	$370 \ \mu g \ m^{-3}$	level 3 (8 h)	
	2003221	0.025 ppm	$30 \ \mu g \ m^{-3}$	excellent	
		0.081 ppm	$100 \ \mu g \ m^{-3}$	good	
Japan	1997 ²²³	0.08 ppm	$100 \ \mu g \ m^{-3}$	0.5 h	
Korea	2004222	0.1 ppm	$120 \ \mu g \ m^{-3}$	8 h	
Norway	1990 ²¹⁰	0.05 ppm	$60 \ \mu g \ m^{-3}$	24 h average	
	1999 ²¹¹	0.05 ppm	$100 \ \mu g \ m^{-3}$	30 min average	
Sweden	2000	0.08 ppm	$100 \ \mu g \ m^{-3}$	adopted from WHO	
Poland	1996 ²¹⁵	0.04 ppm	$50 \ \mu g \ m^{-3}$	category A: 24 h	
		0.08 ppm	$100 \ \mu g \ m^{-3}$	category B: 8-10 h	
U.K.	2004 ²⁰⁸		$100 \ \mu g \ m^{-3}$	0.5 h	
USA (California)	1991 ²¹⁷	0.1 ppm	$120 \ \mu g \ m^{-3}$	action level	
		0.05 ppm	$60 \ \mu g \ m^{-3}$	target level (ALARA) ^a	
	1999 ²⁰³	0.076 ppm	94 $\mu g m^{-3}$	1 h (acute REL) ^b	
	2004 ²¹⁹	0.027 ppm	$33 \ \mu g m^{-3}$	8 h (interim REL)	
	2005218	0.002 ppm	$3 \mu g m^{-3}$	annual average (chronic REL)	
WHO	1987228	0.08 ppm	$100 \ \mu g m^{-3}$	0.5 h average	

^a ALARA = as low as reasonably achievable. ^b REL = reference exposure limit.

Formaldehyde in indoor air - guidelines

Other schemes:

- US Green Building Council LEED
- Voluntary participation
- California Environmental Protection Agency (CARB)
- A state-wide regulation, but frequently referred to as a benchmark
- Set maximum level at 0.10 ppm in 1991
- And 0.05 ppm as target value

Formaldehyde in indoor air - guidelines

Finland has classification for indoor climate

- S1 individual indoor climate 30 µg m⁻³
- S2 good indoor climate 50 µg m⁻³
- S3 satisfactory indoor climate 100 µg m⁻³
- Conversion factor: 60 µg m⁻³ is 0.05ppm

International Panel Products Symposium

Call for papers:

- Innovation in wood based panels
- Panel performance, durability, weathering
- Resins and bioresins
- Novel feedstocks and recycling
- Processing technologies
- VOCs and emissions in service

4th & 5th October 2017

www.ipps.uk.com